Learning to see in thermal infrared:
Surface temperatures of snow and trees
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Why IR?

e Already measured remotely (on lots of satellites,
MODIS, Landsat, ASTER, etc.)

e IR cameras can be mounted on an airplane
e Use T, to assess model energy balance during non-

melt periods (Raleigh et al. 2013; Lapo et al. 2015; Pomeroy et

Surface Temperature:
diagnostic tool for the
energy balance
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Huge (~2 month)
variation in melt
timing due to
longwave input.
Snow surface temp
can identify correct
longwave.

From Hinkelman et al. 2015, J. Hydromet.

Colors are different longwave sources,
line-style variations are different
shortwave sources.

Dana and Tuolumne snow pillow sites
from Tuolumne Watershed, Sierra, CA are
shown.



Goal: We'd like something multiple times
per day (like MODIS, VIIRS) that gives us
information about processes we care about

(a) MODIS 1-Km (day)  (b) DHSVM 150-m (day) (c) MODIS 1-Km (night) (d) DHSVM 150-m (night)

* What does a 1 km grid cell surface
temperature really represent?

e How can we make sense of it in terms of the
variables we measure and model?
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Field Experiment

5-8 Feb 2016
Dana Meadows,
Yosemite, CA
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Showing 1 km x 1 km box (~ MODIS pixel size)
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Before
sun hits
the
meadow

Sun just
hits the
meadow

Sunny
meadow
with
shadows
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Before sun hits
the meadow;
Warm wind from
the N, coldest
spots downwind
of trees
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Sun just hits the
meadow; coldest
spots in shadows
northwest of trees
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Sunny meadow;

Snow surface
warms faster
than trees
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A main source of uncertainty in remote
sensing of snow surface temperature is
the mixed pixel problem — we always
have snow + something else (here, trees)
— the temperature differences between
these groups are large (> 5 K)



Remote Sensing Secret:
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| @@ s‘*‘ﬁ Real remote sensors ignore the
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Stefan-Boltzman equation (E = eoT4)
and love the Planck equation instead.

Planck Equation for Irradiance with a given

Brightness Temperature, T ° Warmer Temp ="
2hC2 1 § Cooler Temp —
e*kT -1 Y

REMOTE SENSING OF ENVIRONMENT 11 221-229 (1981)

1 A Method for Satellite Identification
of Surface Temperature Fields of Subpixel Resolution

Dozier 1981: If you have two
temperatures in a pixel, you can
use the differences between
radiance at multiple wavelengths
to determine both temperatures.




We can separate snow and tree
temperatures with multispectral sensing

Distribution of Temperature within 1 km grid cell: T, (°C) as seen by MODIS bands:
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e Sum Planck’s equation over the area at each
temperature and invert to get Tj.

e Use nonlinear optimization to fit two values + f.,.
e 5 equations, 3 unknowns, with simulated data, recovers
the modes of the histogram well.

Lj = fSCAB(}\]’Tsnow) + (1_fSCA) B()\j'Tforest)



Small problem...

Distribution of Temperature within 1 km grid cell: T4 (°C) as seen by MODIS bands:
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e The differences between these temperatures are tiny!
e Only differences between the midwave bands and the
longwave bands are greater than the sensor noise...

e Essentially, 2 equations, 3 unknowns...

LJ = 1.:SCAB()\j'Tsnow) + (1-fSCA) B()\j’TfOFGSt)



Small problem(s) continued...

NIGHT DAY

* It's dark * Midwave bands are

* No way to know fSCA contaminated by reflected
sunlight

e (Can’t use land surface
cover maps because _Reflected Sunlight and Thermal Background
viewing geometry is always

um/sr

—_—— 0°C
—a— 42°C
——  B0°C

changing and pixels are
hard to geo-locate
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Graphic from Luke Flinn’s 1996 draft EOS
Volcanology Team report



Solution: While fSCA and local temperatures
change rapidly in space, the median T's of trees
and snow are very similar in adjacent cells

(b) snow: 53% {c) 07-Feb- 2016 728!.81’

grid-cell 1

" So, wetakea3x3
matrix of ~1 km cells,
and solve for T, ..,
Tt sy @nd 9 values of

- fSCA

(45 equations with 11
unknowns)

grid-cell 3

90 .. 40 . . O 10
temperature (°C)



Day (credit to Jeff Dozier for idea and code):

In idealized g
testswith 5 ¢~
imposed g ¢
random errors,
works to within
1 degree!

1) Take MODSCAG fSCA and reproject it to the MODIS
Level 1B grid.

2) Use this fSCA and the solar angles relative to the
surface (as well as surface solar radiation
observations if available) to calculate the expected
radiance from reflected sunlight in the midwave IR
bands

3) Subtract this off observed midwave radiance

4) Proceed as before, using MODSCAG fSCA as first
guess and limits to the fSCA fit

(a) &) )




PRELIMINARY RESULTS
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At night, we can separate Tshnow and
Ttrees at 1 km scale and match surface
Tsnow obs within £1 C accuracy.
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Quick Look:
Much worktobe ©_. -
done here!
We’re excited
about the tower -
and P3 data! i
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Summary: Infrared remote
sensing has huge potential for
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snow studies, and we can study
trees too. 5

Questions?
{ jdlund@uw.edu



